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Abstract-The aim of this study is to examine the statical behaviour of the long-span cable­
stayed bridge with fan scheme by means of a suitable continuous model.

The given solution of the Statics basic equations of the model focalizes a prevailing truss
behaviour of the bridge.

This solution in fact-developed according to the perturbative technique-gives as the gen­
erating term the "truss solution" of the bridge and, as correction terms-of higher order in the
perturbative parameter-the local bending effects on the girder.

According to this solution it is possible to achieve a synthetic understanding of the statical
behaviour of the bridge and to express, by simple formulas, the more interesting required
quantities.

The obtained results are checked with some numerical solutions obtained via finite element
methods that confirm the soundness of the proposed model.

NOTATION
a stay's nondimensional deformability

AiAo) stay (anchor stay) cross-sectional area
a(ao) stay (anchor stay)-girder angle
13(130) stay's (anchor stay's) stress ratio

C, girder torsional stiffness
8 midspan deflection
a stay's spacing

ae: fictitious deformation increment
au stress increment

E elasticity (Young's) modulusE: Dishinger's fictitious elasticity modulus
e strain; also, girder nondimensional stiffness
g dead load
'I specific weight
H tower height
I girder inertia

K tower stiffness
I lateral span length

10 cable horizontal projection's length
L central span length
h flexural displacement wavelength

m,(m,) torsional action of the stays (torsional load) on the girder
M bending moment in the girder
M, twisting moment in the girder

fL nondimensional torsional load
n distributed axial force along the stay's curtain

N axial force in the girder
No(Ns ) axial force in the (anchor) stay

p live load
P nondimensional live load

qo(qv) horizontal (vertical) component of the load q
Rp(Rs ) pile (side support) vertical reaction

p nondimensional cable curtain stiffness
So horizontal component of the anchor cable's axial force

U stress
U a allowable stress

ug(up) stress produced in the stays by dead (live) load
u~ stress produced in the anchor stay by dead load
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CJ'I, CJ'2 initial and final stress values in a stay
rj, r2 geometrical aspect ratios of the bridge

it girder torsional angle
T girder nondimensional torsional stiffness

ito(it d truss-like (flexural) part of {}
u, v, w displacement parameters of the bridge

V, V, W nondimensional displacement parameters
Vo, Yo, Wo

(VI, VI, WI) truss-like (flexural) part of V, V, W
x, v, z coordinates

. ~ nondimensional abscissa
<p stay distribution function

x(Xo) nondimensional tower (anchor cable) stiffness
'ItR('ItLl right (left) pylon torsional rotation
'Ito('It d truss-like (torsional) part of 'It

I. INTRODUCTION

In the second halfof this century the cable-stayed bridge has found a successful renewal.
Particularly, in the last decade, the fan-shaped truss-like scheme obtained a special
interest as a valid alternative solution for long spans, compared with the suspension
bridge[I-6].

The physical behaviour of the fan-shaped scheme (Fig. 1) is very similar to that of
a large truss structure where the main state of stress is given by axial forces in the
stays and in the girder, while girder bending is of secondary importance.

This scheme most conveniently applies when spans are more than 300 m long. In
such instances, the spacing between stays is usually small compared to the bridge's
main span and we may therefore reasonably suppose a continuous stay distribution
along the deck, for the purpose of an analytical investigation[7].

In this article the static behaviour of long-span cable-stayed bridges is studied by
means of a continuous model.

The fundamental assumptions of the analysis are:
(i) diffused stay arrangement along the deck;

(ii) truss-like statical scheme.
By the first condition, the analytical problem is decribed by a convenient set of

integro-differential equations. An approximate solution of these equations can be given
which analytically reflects the second assumption, namely that of the state of axial
forces prevailing over the flexural one.

Within this framework, it is possible to develop a simple analysis of the long-span
cable-stayed bridge, which, though approximated, collects main qualitative and quan­
titative aspects and translates them into simple results. Finally, it is shown that the
continuous model results agree satisfactorily with some numerical computations cor-
responding to the usual discrete model of the bridge. .

2. STATICAL BEHAVIOUR: PRELIMINARY ASSUMPTIONS

The statical scheme we shall examine (Fig. 1) is characterized by the following
parameters:

H = tower height;
L = central span length;
I = lateral span length;

.il stays spacing;
a stay-girder angle;

As stay cross-sectional area;
Ao anchor stay cross-sectional area;

I = girder inertia;
K = tower stiffness.

It is known[4J that, in order for the anchor cable to be stable, the ratio Lli should
not be any smaller than ~2.8, while the ratio HIL is usually set at 0.2, which is the
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L L

Fig. 1. Structural scheme of the bridge.

optimum value referred to the cable's weight. In the numerical examples, values of LI
I = 3 and HfL = 0.2 were therefore used. The constraints are shown in Fig. 1: the
girder is supposed to be not horizontally constrained with respect to statical forces,
while damping devices take care of dynamic actions (braking, etc.).

The statical analysis of the bridge has to be performed in different ways according
to where live p or dead g loads are considered.

Stresses produced by dead loads are strictly dependent on the erection procedure
of the bridge. Decks are usually cantilever erected; in this case tensions may be so
controlled in stays that the deck's final configuration is straight and free from bending
moments. Stresses produced by dead loads g are evaluated from the statically deter­
minate scheme where hinges are placed at the nodes[4, 5, 6].

Let N be the a~,ial force in the girder, N s the force in a generical stay and n = Nsf
.i the axial force distributed along the continuous curtain of stays. From the condition
of equilibrium of the girder we immediately get

nm = g(1 + ,2)1/2

Nm = g ~ [(2~r - ,2 ]

where' is the adimensional abscissa along the girder (Fig. 1):

z
H

The axial force No in the anchor stay is

and the reactions R s of the side supports and Rp of the piles are:

Rs = ~ [(~r - I]
gl [L J2

Rp = 2' 2t + I

(1)

(2)

(3)

(4)

(5)

(6)

As far as the effects of live loads p are concerned, the prevailing behaviour is still
truss like. In the girder, in fact, as shown in the next sections, there are also bending
stresses that, for long spans, have only local character and are weakly dependent on
the span length.

While the axial stresses can be evaluated according to the truss scheme, bending
stresses in the girder depend on the relative stay-girder stiffness. To evaluate defor-
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mations or stresses in the girder, it is very important to evaluate first the elastic response
of the single stay, already in tension for dead loads, to a generic deformation increment
~E:. The Dischinger modulus, as it is well known, can characterize this tangent re­
sponse of the single stay[ I].

The stay axial force increment can, in fact, be evaluated as

* *!1N, = E s !1E,A s (7)

where E:, the Dischinger fictitious elasticity modulus, is a function of the primitive
dead load tension in the stay:

E
(8)

with E the Young modulus, 'Y the specific weight and 10 the horizontal projection of the
stay length (Fig. 3).

The tangent Dischinger modulus (8) gives a sufficient approximation if the initial
stress at is not too low and the stress increment !1a is small.

It is, on the other hand, possible to obtain a more accurate evaluation of the stay
response by using the secant Dischinger modulus:

I +

EE; = -------::--=-----

(~;;;)C2;2~)
(9)

where ~ represents the ratio between the final value of the stay tension a2, and the
initial one at. The secant modulus approximation requires an estimate of the final stress
a2·

3. CONTINUOUS-MODEL EQUATIONS

Deformations and stresses produced by live loads can be evaluated by analyzing the
linearized response of the bridge starting from the dead loads equilibrium configuration.
The reactivity of previously existing axial forces in stays to further deformations are
defined through Dischinger's fictitious elasticity modulus.

Vertical loads, symmetrically placed with respect to the bridge's longitudinal sym­
metry plane, will be considered first.

Next, torsional effects produced by load eccentricities will be studied.

3.1 In-plane analysis
The girder and pylon's extensional deformability can usually be neglected.
The bridge's additional deformation, when no torsion occurs, is then determined by

the following displacement parameters (Fig. 2):
(i) the girder's vertical displacements v(z);

(ii) the girder's horizontal displacement w;
(iii) the pylon tops' horizontal displacement u.

Fig. 2. Bridge deformation and displacement parameters.
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As already said, the bridge's structure is symmetrical, the pylons are not joined with
the girder which has no statical horizontal constraints. Consequently, the horizontal
equilibrium of the bridge's left and right sides requires shear forces to be the same at
the pylon tops sections.

Therefore, however vertical loads are placed on the deck, displacements ofthe pylon
tops will always be opposite. This is why one parameter has been employed for the
pylon displacements.

The effect of live loads may be analyzed only after examining the behaviour of a
single stay when the previously defined u, v, w bridge displacements occur. Let us
refer to a generic stay anchored to the left tower (Fig. 3). The LlE; deformation incre­
ment produced by u, v, w displacements is

* Llis • 1
LlEs = T = (v sm a + (w - u) cos a) ~

V' 2 w-u.
= H sm a +~ sm a cos a.

(10)

The stay axial force increment LlNs is then evaluated by eqns (7) and (10). The
horizontal LlN] and vertical LlN~ components of LlNs are the contributions of the stay's
axial deformation to the new actions produced on the girder:

v E* . 3 U ± w * . 2
LlN~ = - H sAs sm a +~ EsAs sm a cos a (11)

o v E* . 2 W ± U * 2LlNs = ± H sAs sm a cos a - ~ EsA s sin a cos a (11')

where the - or + sign applies to the left or right pylon, respectively. Furthermore,
relations (11) represent the action of stays on the girder with signs in agreement with
the axes of Fig. 1.

The sections As and A o are found from the design values 0"g and O"~ of the stays
tension due to dead loads of the continuous stays curtain and of the anchor cable,
respectively. We have:

gLl
As = ---''''---­

O"g sin a

gl [ (/)2JI/2 [(L)2 J
A 0 = 20"~ 1 + H 2i 1.

(12)

(13)

According to the assumption of uniform stay distribution, we finally get the following
vertical and horizontal forces per unit length on the girder:

E;As .
qv = -- [ - v sm3 a + (u ± w) sin2 a cos a]

HLl

E;As .
qo = HLl [±vsm2 acosa - (±u + w)sinacos2 a].

c ~!__~--

N~ "-N~ + ~Ns
f w ~

Fig. 3. Strain and stress in the deformed stay.

(14)

(15)
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Equations (14) and (15) characterize the interaction between the stays and girder.
thus enabling us to write the bridge's equilibrium equations in terms of the three dis­
placement parameters ii, ", w.

In fact, we get

Flexural girder equilibrium
The girder equilibrium equation, neglecting the effect of the axial stress produced

by dead load, is

(16)

where p(z) is the live load,
The other two equations should express the equilibrium conditions corresponding

to the relative displacement u between pylons, and to the girder's horizontal translation
w. The following equations are found to be equivalent to the former (Fig. 4):

Left pylon equilibrium

Right pylon equilibrium

L(- qo) dz - Ku - So = 0

f (- qo) dz + Ku - So = O.
R

(17)

(18)

In eqos (17) and (18) qo is given by (15) and the integration is extended to the stays
curtain belonging to the bridge's left or right side, respectively; K is the pylon tops'
flexural stiffness and So is the horizontal component of the anchor cable's axial force:

E~Ao . 2
So = -(w::;: u) H Sill 0'.0 cos 0'.0 (19)

where the - or + sign applies to the left- or right-hand anchor stay, respectively.
Inserting (14) and (15) into (16), (17) and (18) we get

Girder equilibrium

EJ,!IV E; A., . 1, + H!1 sm- 0'.

Left pylon equilibrium

E;A, _ .,
l' - H!1 (u + w) sm~ 0'. cos 0'. = P (20)

o (21)

Fig. 4. Horizontal forces on the pylon tops.
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Right pylon equilibrium

where

o

837

(22)

A z = AI + K.

(23)

(24)

Equations (20), (21), and (22) should be conveniently made dimensionless. Therefore,
let

and from here onwards

uu=­
H

(25)

( )'
d( )

d~
(25')

will denote derivatives with respect to the dimensionless abscissa ~.

Equation (20) becomes

£1 IV £;A,.. £;A,
H 3 V +~ sm3 a V - ~ (u :+ W) sin2 a cos a = p. (26)

It should also be noted that

g

where the Dischinger effect is accounted for by the parameter

(27)

(28)

which defines the stays' deformability.
If, as usually happens, tension {]'g produced in the stays by the dead load is unchanged

stay by stay, parameter a becomes constant.
We will assume from now onwards that stays' design is such that {]'g is constant.
Equation (26) may thus be written as

.!.- {]'g V1V + sin
2

a V _ sin a cos a (u :+ W) = PUg (26')
H 3 g 1 + 1 + aC gE

or

(29)
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where
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E
4 lUI( :::::: (4lUI()1/4

4 H 3g E H3g

sin2
0:: 1

1 + a,2 = (l -j. a,2) (l + ,2) :::::: <pm

(30)

(31)

sin 0:: cos 0::

1 + a,2 (l + a,2)(l + ,2)

pm :::::: pm U g .

g E

(32)

(33)

The two equations which give the equilibrium of the pylon top may similarly be
written dimensionless so that the following set of equations is found:

Girder equilibrium

Left pylon equilibrium

Right pylon equilibrium

where

pW - (p + X)U + i '<pV d, :::::: 0

f cos2
0:: d

P :::::: JL 1 + a,2 '+ XO

*EoAo . 2
XO :::::: -- H sm 0::0 cos 0::0E g

KUg

X:::::: Eg .

(34)

(34')

(34")

(35)

(36)

(37)

The exact solution of eqns (34) is usually quite difficult to find. An approximate
solution may be found, however, observing that:

(i) the bridge's statical behaviour is always characterized by a "truss-like" effect,
which usually prevails over the girder's bending. We may actually suppose axial
forces in the bridge to be well defined on the truss-structure scheme (namely
girder inertia I :::::: 0), while the flexural effects are, on the contrary, of a local
nature.

(ii) Parameter E found in eqn (30) is of main importance to the solution of eqns (4)
and may be written as

E 00')
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that is, as the ratio between girder stiffness I/H4 and stay stiffness glrIgH. Actually,
since the ratio HIL is usually constant, parameter IIH 4 is also proportional to IlL 4 and
can thus be taken as a measure ofgirder stiffness. Parameter glrIgH is instead essentially
proportional to the cross-sectional area of stays, and the ratio (30') may therefore be
regarded as a measure of the stiffness between deck and stays.

It may immediately be seen that the value of e in long-span bridges is small, usually
about 0.1 -:- 0.3.

Both observation (i) and (ii) are therefore strictly related: that is, the assumption of
a truss-like behaviour in cable-stayed bridges is connected to the value of e: the smaller
the values of e, the more truss-like the bridge's behaviour.

These observations will be used and fully proven by the approximate solution of the
set of eqns (34) we shall give below.

3.2 The truss solution and the secondary girder bending
Given the load distribution P({), let u({) (V, U, W) be the general solution of the

equilibrium equations:

(38)

where U1 is the general solution of the homogeneous equation, and Uo is a particular
one.

Approximate solution Uo and u, can be found supposing parameter e in (34) to be
conveniently small.

Since e relates the girder flexural stiffness to the stay's extensional one, evidently
the condition e~ 0 characterizes the structure's dominant truss behaviour. We should
also notice that e diminishes as the bridge's span grows so that the suggested scheme
applies mainly to long spans.

Evaluation of Uo

A particular solution of eqns (34-34") is found noticing that displacements Vo, Uo
and Wo in eqn (34) must be of the same magnitude as P. We may therefore neglect the
quantity e4 /4V1V

; Le. we find Uo on the truss-like scheme.
The set of equations in Vo, U0 and W 0 finally reduces to

'Pm Vo - (Uo ::;:: WO){'PW :::: P({)

pWo (p + X)Un + L{'PVo d{ :::: 0

pWn + (p + X)Uo - L{'PVn d{ :::: 0

(39)

which may be explicitly solved to give Vo, Uo and Wo directly as a function of P({).
After a little manipulation we get

W0 = 2~0 [- L{P d{ + JR {P d{]

Uo = 2(xo \ X) [ + L{P d{ + JR {P d{J

Vo = (U ::;:: W )1 + P({)
o 0 '" 'P({)"

(40)

We notice that, since the load P({) may be an arbitrary function. the solution uom
may show some discontinuities which make it not compatible. In sucl a case the general
solution u 1m of the homogeneous problem will provide the compa-ibility of the com­
plete solution.
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Evaluation of displacements "I
An approximate solution of the homogeneous system is found by choosing expres­

sions of VIm similar to the solution of the scheme of a beam on elastic soil. More
specifically, solutions of the type

(41)

will be studied where f(~) is an appropriate function.
Extensively speaking, we shall examine the four damped sinusoidal functions defined

as

(42)

which, if fm = A~, are the four independent solutions of the problem of the Winkler
beam.

We show now that if f(~) is taken so that

and setting

1 fc~f(O = - 'Pl/4 d~,
E a

(43)

(44)

we get approximate solutions (which apply as E ~ 0) of the homogeneous problem
described by the set of equations:

4

: V~v + 'PVl - (VI ::;:: Wd~'P = 0

pW 1 - (p + X)V I + L~'PVl d~ = 0

pW1 + (p + X)V I - fR ~'PVI d~ = O.

(45')

(45")

(45"')

In order to show that the solution given by (42) and (44) is correct, we evaluate the
quantity E4/4 V~v and get

+ 3( ± I ± i?f"2 + 4( ± 1 ± i?f"'f' + (± 1 ± i)fIV]

and, making use of (43):

(46)

Let us now evaluate the integral J ~'PV 1 d~:

(47)
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We see from (47) that the integrals in both (45") and (45"') are of the same magnitude
as E. We thus deduce that VI and WI are also of the same magnitude as E and may,
therefore, be neglected compared to girder flexural displacements VI(,) given by (42).

If we now examine the girder's equilibrium equation (45') and recall (46) and (47)
we get

We thus conclude that this equation is also satisfied at least of terms of order E.

In conclusion, the general solution of the homogeneous problem can be expressed
as

VI = WI = 0

VI(,) = cle-f(tlsinfW + C2e- fW cos f(') + c3ef<tl sinf(O + c4ef<tlcosf(O. (48)

The approximate solution given by (40) and (48) reflects the truss-like behaviour of
the bridge scheme we are examining; in fact the displacements given by eqn (40) cor­
respond to E = 0, i.e. to the scheme with hinged connections of the stays to the girder,
and therefore Uo may be understood as a truss behaviour solution. To the term Yo, the
quantity V I should be added. V 1 strictly depends on the parameter E and represents
the additional displacements required to re-establish the flexural compatibility uncom­
plied with by the truss solution. Overall displacements are therefore the sum of the
truss solution Uo involving the whole structure, and of the flexural share VI, which
characterizes only a local effect, since it is given by damped sinusoidal functions where
damping is quicker, the smaller the value of E.

The truss-like behaviour of this scheme of cable-stayed bridge has thus been ana­
lytically confirmed, behaviour being more evident, the smaller the value of E, as for
instance occurs as the bridge's span grows.

The wave length "- of the sinusoidal waves VI(O will be approximately evaluated so
that the general solution's damped nature may be better defined.

This length varies along the deck and, at the abscissa '0, is found to be such that

(49)

Supposing a small "-('0), we may write

and hence

(50)

Recalling that

the maximum wave length is found at the bridge's midspan, and setting a == 0.05, L/
2H == 2.5 <f'(L/2H) == 0.1, it is found to be

"- (2~) == lIE
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or, being e == 0.2
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}.., (!::..-) == 2 22H .

while when ~ = 0 we get 'P(O) = 1, }..,(O) = 6.3e and, with e == 0.2, }"'(O) == 1.26.
Now we give an approximate form of the function

Approximating 'P(O with

where

I 1
b = 2 - 2[5(1 + 4a)]l/4

(51)

(52)

obtained by interpolating 'P(~) at ~ = 0 and ~ = 2, and which applies for values of a
== 0:05 - 0.3, we get

(53)

3.2 Torsion
In this section we examine torsional effects due to load eccentricities. Since stays

respond differently to positive or negative stress increments, torsion and vertical bend­
ing of the girder are coupled in a nonlinear analysis'. However, ifthe tangent Dischinger
response of the stays is assumed, flexural and torsional effects may be examined sep­
arately. We also assume that the girder is symmetric with respect to a vertical longi­
tudinal plane, and we consider the two possibilities of Fig. 5, that is H-shaped and A­
shaped towers. Within these assumptions the bridge's torsional deformation is defined
by the torsional rotation 8(z) of the girder and by the rotations tVL and tVR of the tower
tops sections (Fig. 6).

For A-shaped towers it can be used tVL = tV R = O.
The torsional equilibrium equation of the girder can be written in the form

(54)

where Ct is the torsional girder stiffness, m t the distributed torsional couple due to the
external load, and ms the torsional action on the girder produced by the stay's curtains.

I

*b I
I

""... I

b

Fig. 5. (a) H-shaped tower, (b) A-shaped tower.
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As in the previous section, it is possible to express the stay's action as a function of
the bridge deformation parameters e(z), ljJL, ljJR. With reference to the left half of the
bridge we therefore get the following equilibrium equations, written in dimensionless
form:

Girder equilibrium

(55)

Left tower equilibrium

(56)

where

(57)

and the other quantities are as previously defined by eqns (31), (32), (35)-(37).
The case of A-shaped towers can be obtained from eqn (55), by assuming that the

anchor cable is infinitely stiff so that the rotation ljJL of the tower becomes zero. In
this case, therefore, we put Xo = oc in eqns (55) and (56).

An approximate solution of eqn (55) can now be found with the same procedure
used in Section 3.2. For long-span bridges, in fact, the parameter T is usually small.
Then a particular solution eo, (ljJL)O of eqns (55), (56) is evaluated on the truss-like
scheme; with T = 0, we get from eqns (55), (56)

eo(~) = 1Il~~) + X ~ Xo ~ Lf.L(~n d~

(ljJL)O = _+1 r eo(O~IIl(~) d~.
p X JL .

(58)

(59)

As in Section 3.2 it is possible to prove that, neglecting quantities of order T in eqn
(55), the complete expression of the girder rotation is

e(~) = C\efW + Cze- m ) + eo(~) (60)

and

ljJL = (ljJdo (61)

where

I l'f(~) = - III l/Z(~) d~. (62)
T ,0

4. APPLICAnONS

The approximate solutions given in the previous sections can be quite easily applied
to give simple expressions of the effects produced by live loads. As an illustration, the
bridge's midspan cross section will be analyzed and its maximum deflection and positive
bending moment evaluated. Furthermore, the effect of a uniform eccentric load is
considered.
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4.1. Evaluation of maximum midspan deflection
Maximum midspan deflection occurs when the whole main span is under a live load.
The load condition is uniform throughout the main span.
Taking the symmetry of the load condition into account, W0, Uoand Vo are expressed

as follows:

Wo = 0

(63)

In order to find the complete solution at the bridge's middle part, the solution of the
homogeneous problem, in the middle part, is taken in the form

where

I rU~1l

,r<O = ~ J( ;.p1/4 d~.

(64)

(65)

This solution represents the flexural waves decreasing from the midspan towards
the towers.

Finally deflection V(~) is found as

V(O = p U(2~r Xo ~ X' + (I + a~2)(1 + ~~)J

r l(L)~ I L (L')3J
+ P 2;114 2' 2H Xo + X + 2(1 + a) 2H + 4a 2H

. [e I(~} sin f(O - e lip cos f(OJ. (66)

If, for instance, , = L/2H, the maximum midspan deflection is found to be

v C~) = p r~ (2~r Xo + x

rI ( L )2 I L ( L )3-1_ p _E_ _ _._ + (I + 0) + 2a- .
;.p114 4 2H XO + X 2H 2H_

(67)

We notice now that, when a uniform load is applied to the main span, stresses in
the mid-bridge stays are practically proportional to the applied load and therefore:

IT,,+p g + P[3 = -=:=-"-.
IT" g

Furthermore, the axial force produced by dead load in the anchor stays is

(68)

(69)



Statical behaviour of long-span cable-stayed bridges

a live load p over the whole main span gives

and thus for the anchor stays

845

(70)

p. _ a(g+p) _
\'-'0 - ­

ag

(71)

For the load conditions being examined, tensions in the stays and the anchor cable
may thus be quite accurately evaluated when dead loads g and live loads p are present.
In order for mid-span displacement to be evaluated from (67), it is convenient to evaluate
the stays' elastic response by means of the secant modulus defined by (9) where 13 is
given (68) and (71).

The quantity XO + X may be expressed as

Xo + X =
K all I+----
gEl + e

g

(72)

where a a is the allowable stress in the stays and

a "'1
2
EH

2 I + 13 I + 13
= 12a~ ~=a~

r, = L/2H

r2 = l/H.

(73)

Concluding, the maximum midspan deflection 8, referred to span L, is given by

8 p all 1 I {I 3 I 2 2- - - r + (1 + arl)(1 + rdL - gE --p 2rl 2 1 Xo + X
1 +-

g

- E(1 + ar1)1/4 (-4
1

r1 + (1 + a)rl + 2ad)(1 + rT)1/4} , (74)
XO + X

where Xo + X is given by (72).
The parameters involved are, therefore,

aa k p
r, - r2 - - - - - a - E - ­

Egg'

of which the first three may be regarded as fixed and the fourth, of little influence, is
averaged as 50.

Actually, it is enough to study the influence of a and pig, when making a qualitative
investigation of the bridge's mid-span deformability.

The dependence of the ratio 81L on the a and E parameters is plotted in Fig. 7 where
the usual value pig = 1 has been assumed.

The first thing to notice is that 81L depends almost linearly on a.
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Fig. 6. Torsional deformation parameters.

Similarly, 'BIL linearly depends on E and it is still quite proportional to pig for usual
values of such a parameter. These results allow us to make the following comments.

Firstly, midspan deflections linearly grow with the product a . L, and therefore with
L 3, assuming that, given L/2H and {J'g, a is proportional to L 2 •

The influence of E on deflections is not relevant and decreases as the span grows.
The girder's moment of inertia thus cannot be taken as a meaningful parameter, which
may help in restricting the bridge's deformability as the span grows.

In Fig. 7 a comparison is also made among the results given by formula (74) and
by some numerical computations using a finite element analysis of eqns (34). The com­
parison shows good agreement, especially for E less than 0.2.

4.2. Evaluation of maximum midspan positive bending moment
The maximum bending moment is evaluated by means of the corresponding influence

line. Using the solution (41) we get

V(o = ~ E

3

1/4 ( L )
XO + X 8' 'I' 2H

1 E- -, [e-f(~)
4 '1'1/4

e- JW cos f(Q]. (75)

8

6

4

L/2H= 2,5

L/H= 5/3

lJa/E= nOO/2,1X10
6

K/g =50

- analytical

• numerical

o 0,1 0,2 0,3

Fig. 7. Maximum midspan deflection as function of II = 'Y't..H'iI2<J~.

a
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The magnitude of the first term of (75) is £3 and may therefore be neglected
compared to the second. Maximum bending moment is then evaluated taking the fol­
lowing expression of the influence line:

(76)

The function f(') changes sign when' is such that

(77)

and thus

Taking expression (53) of f(') we get

1 1 [( L)2 J1I2, = b - b 1 - b 2H + 2b ~ £

The dimensionless maximum moment is, therefore:

(78)

(79)

(80)

and since between , and Ll2H the influence line is practically linear, the integration
of (80) is approximated as follows:

(81)

considering that f(L/2H) = 0, we have

and in a dimensional form

_ 2 £ (L -)M max - pH 4",114 2H - , .

(82)

(83)

The values of Mmax/PW are plotted in Fig. 8 as functions of the a and £ parameters.
Also in this case the comparison with the numerical results is satisfying for £ :!S 0.2.

4.3. Torsional effect
The previously found results will now be applied to evaluate the effect of a uniform

torsional load:

(84)

This loading condition is interesting because in such a case the maximum rotation
at midspan (, = Ll2H) , and the maximum torque of the girder at , = 0 occur.

The symmetry of the structural scheme gives

(85)
SAS 21:8-8
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L/2H=2.5

LIH~ 5/3

(Ja!E= 7200/<,1. 106

K/9 = 50

0,08

0,06

0,04

•
•• - analytical

• numerical

0,02

• •

a 0,1 0,2 0,3 a

Fig. 8. Maximum midspan bending moment as function of (J '=' -lEH2/12cr.t.

From eqns (58), (59) we get

{to :::: fJ>o +! fJ>o (!::...) 2 ,

;;p 2 XO + X 2H

1 fJ>o (' L )2ljI- -
- 2 xo + X 2H

If the boundary conditions are

6' (2~) = 0
6(0) :::: 0

we get from eqn (60) the following expression of the complete solution 6('):

(86)

(87)

(88)

(89)

Therefore the maximum rotation at midspan is

(
L ) {I 1 1 ( L )3 T

{J 2H == f.Lo ;;p(L/2H) + 2 X + Xo 2H - ;;p'I2{L/2H)

[( I)' I 1 (L)2} (91)
• ; Ll2H + 2X + XO 2H
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30

26

22

18

14

10

6

e/Ilo

II H ~ 5

LIH'=5f3
aajE '= 7200/2,1.10

6

KJg ~ 50

oH!l>,=6

.HI{j~24

a

o 0,05 0,10 0,15 0,20 0,25 0,30

Fig, 9. Maximum midspan torsional rotation as function of (I

Mt/mtH

LJH
L/ H 5f3

CEJ (TalE 72()0 f2,1x10
6

03
K/g '" 50

o HI t> ~ 6

• HJ{j = 24

02

t" 0,1

••••
01 0

0
0

0
t ~ 005

• • • •
0 0 0 0

a

0 0,05 0,10 0,15 0,20 0,25 0,30

Fig. 10. Maximum twisting moment at sections ~ oas function of (I 'Y2EH2112r.r;
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and the twisting moment at the Section ~ = 0:

C, f.Lo [! I (.~)." + !J
H 2 X + XO 2H ,

[ , + ," I I (~)"J
2 X + XO 2H .

Quantities

are shown in Figs. 9 and 10 for typical values of the parameters:

K

g
a, '1',

p
g

Figures 9 and 10 also show the results of the numerical analysis.

5. CONCLUSIONS

The static behaviour of long-span cable-stayed bridges has been analyzed by means
of a continuous model. Simple expressions have been derived of the main effects pro­
duced by live loads. The obtained results collect the main qualitative aspects of the
bridge behaviour.

The comparison with numerical solutions shows that the proposed continuous model
usually gives conservative results as, for instance, in the case of maximum midspan
deflection and bending moment evaluation.
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